
SETI Signal Classification: Identifying Signals Buried Deep in Noise

Akash Mahajan
akashmjn@stanford.edu

Guoli Yin
guoliy@stanford.edu

Marc Vaz
mvaz@stanford.edu

Abstract

Identifying and classifying signals of interest in an au-
tomated fashion would help SETI scale its search. In this
project, we worked with a simulated dataset for the SETI-
IBM code challenge, and attempted supervised classifica-
tion. We developed a pre-processing pipeline for enhanc-
ing the signal and use two approaches for feature extrac-
tion/classification. For one, we improved on a previously
developed algorithmic method, and for the second we de-
signed and tuned a custom CNN architecture appropriate
for this dataset. An ensemble of the two approaches obtains
an overall accuracy of 80% and F-1 score of 96% at distin-
guishing signal from noise.

1. Introduction
1.1. Dataset

An important problem for SETI is to identify signals of
interest and distinguish different signal types, some from
man-made sources, from a data stream of 4TB/hour from
the Allen Telescope Array (ATA). To overcome the absence
of sufficient labeled data containing potential signals of in-
terest, SETI+IBM researchers have generated a simulated
dataset. The raw data consists of complex-valued time-
series signals of length 792,576 as shown in Figure 1a that
are to represent around 90 seconds of observation of the fre-
quency spectrum by the ATA. This contains 5 signal types
and non-stationary noise characteristics that model radia-
tion observed from the Sun (Figure 1b). The data is more
or less evenly distributed (see Table 1), however, an empiri-
cal analysis suggests that 15-20% of the data has extremely
poor signal to noise ratio (SNR) with signals barely/not dis-
tinguishable from visual inspection of spectrograms (Figure
1c).

2. Methodology
2.1. Dataset division

We used a hold-out set method of cross validation and
divide the dataset of 13985 signals into 10588, 2097 and
1300 training, validation and test examples. To simplify

(a) Raw signal (complex amplitude vs time)

(b) Signal classes clockwise from top-left: noise, narrow-
band (line), narrowbanddrd (slight curve), squarepulsednar-
rowband, squiggle, squigglesquarepulsednarrowband.

(c) Signal with poor SNR

Figure 1: Samples from dataset

the initial stages of evaluating models, we used a smaller
subset of our data comprising 4 basic classes (labels 0, 1, 2,
4) that we term BASIC4 that consists of broad signal shapes
(line,curve,squiggle) without pulses.

2.2. Approach overview

Given the raw spectrogram signal, we first converted the
same into a spectrogram for analysis, by dividing the signal
into time-slices and generating a periodogram for the same.
For our final model, we employed a technique known as a
Welch periodogram at this stage for the periodogram (Sec-

1



Signal Class Count Label
Noise 1998 0
Narrowband (lines) 1997 1
Narrowbanddrd (curves) 3995 2
Squarepulsednarrowband (pulsed line) 1998 3
Squiggle 1997 4
Squigglesquarepulsednarrowband 2000 5
Total 13985

Table 1: Data distribution

tion 3.1) in order to improve SNR. The dimension of the
generated periodogram is tunable (default provided by ibm-
seti package is 129 × 6144). The spectrograms were con-
verted to images, which were used for downstream classi-
fication/feature extraction by two methods in the following
steps. In Section 3.2 we used an optimization-based ap-
proach to extract a time-series of signal frequencies that is
classified using manually defined features in Section 4.2.
For the second approach, we developed a custom CNN ar-
chitecture to classify these images (Section 4.1). In Section
4.3 we conclude with an ensemble model of the above two
approaches.

2.3. Baseline Model

To establish a quick baseline, we transformed the sig-
nals to spectrograms using the default ibmseti package to
129 × 6144 spectrograms and then down-sized these to
224 × 1024 images (size chosen arbitrarily through visual
inspection). We used the popular VGG CNN model [3] with
pre-trained weights on ImageNet dataset to extract features,
and classified the extracted features using a linear SVM. We
found the best performance to be from the block5 layer, tab-
ulated in Table 2. The results indicated that a major source
of confusion was distinguishing signal from noise, and lines
(narrowband) from curves (narrowbanddrd) possibly due to
several very slightly curved signals.

Prediction 0 1 2 4

True class

0 173 1 0 4
1 27 100 31 2
2 74 89 212 7
4 83 4 2 104

Overall accuracy: 0.65
Signal v noise F1: 0.85

Table 2: Results for baseline model on BASIC4

Prediction 0 1 2 3 4 5

True class

0 174 0 0 0 0 4
1 29 97 25 4 1 1
2 14 74 210 2 3 2
3 14 7 2 82 3 16
4 24 0 5 3 69 26
5 17 0 1 3 59 53

Overall accuracy: 0.51
Signal v noise F1: 0.80

Table 3: Results for baseline model on 6 classes

Figure 2: Image generated from FFT (left) vs Welch peri-
odogram (right) for a squigglesquarepulsed signal (note the
improved SNR)

3. Pre-processing
3.1. Signal Processing - Welch Periodogram

Each entry in the dataset consists of a time series of
792576 samples as described above. This time series can
be partitioned into a number of time slices (for example 129
slices with 6144 samples). An ordinary FFT over such a
slice would result in a spectrogram of 192× 4128, however
a Welch periodogram averages the FFT for smaller overlap-
ping chunks of a specified size (say 256) across each slice of
6144 samples, a final dimension of 192× 256. The averag-
ing improves the SNR (Figure 2), at the cost of reduced res-
olution (from 4128 to 256). Using this method, we can gen-
erate spectrograms of an arbitrary dimension without loss
of signal due to downsizing. Applying this method to the
baseline data improves the accuracy from 0.65 to 0.71.

3.1.1 Aspect ratio / Time-frequency resolution

The impact of different aspect ratios (different time vs
frequency resolution) on model performance, was studied
using the BASIC4 dataset on the SVM models, using the
scaling method as described above. Analysis of the confu-
sion matrix for different aspect ratios showed that images
with a larger horizontal aspect ratio were better at differen-
tiating between the narrowband (line), and narrowbanddrd
(slight curves). An ensemble model was also tried between
192 × 256 and 192 × 512 that was weighted to trust nar-
rowbanddrd predictions more from the latter. The results

2



tabulated in Table 4, show the relative improvement for all
methods.

192x128 192x256 192x512 Ensemble

0.66 0.71 0.70 0.72

Table 4: SVM Accuracy across image resolutions: BASIC4

3.2. Trace Extraction

For this approach, we built upon an algorithm devel-
oped by the previous year’s team [1] that aims to extract
a time-series of frequency values X|x ∈ [1, 2, · · · , F ], cor-
responding to the frequency value of the signal at each time
instant. This is formulated as an optimization problem seek-
ing to minimize a loss that comprises a tradeoff between in-
tensity value at a chosen point Ixt

and its deviation from the
previously chosen point.

L(X) = −
T∑

t=1

[
αIxt − (1− α)(xt − xt−1)

2
]

(1)

This is solved via dynamic programming, with the over-
lapping sub-problem being the choice of the best previous
point xt−1 assuming that the current point xt is chosen. As
this was designed for a different dataset, we see two prob-
lems in Figure 3. For one, the algorithm is unable to catch
the signal for images with poor SNR, and second, partial
signals result in a set of spurious points being chosen after
the signal is cut off since the algorithm is set up to generate
a point for every time instant.

3.2.1 Column Normalization

An improvement to this algorithm stems from a key ob-
servation in Figure 4 (top left) where we can see that the
background noise seems to have a broad ’banded’ presence
that is exaggerated when normalizing the image by row
(top right). This characteristic was observed across several
images, and is a characteristic of ’pulsars’. Normalizing
by column eliminates this noise characteristic leading to a
more ’even’ noise and the algorithm does not get stuck at
regions with high median values due to background noise
(bottom right). Thus the loss is now updated, where Mxt

f is
the median of the frequency column f corresponding to xt.

L(X) = −
T∑

t=1

[
α(Ixt

−Mxt

f )− (1− α)(xt − xt−1)
2
]
(2)

Figure 3: Trace extraction algorithm performance for differ-
ent image types. (top) clear signal, (middle) partial signal,
(bottom) faint signal from Figure 1c

Figure 4: (top left) Poor SNR image with column-wise
mean/median (orange/blue) overlayed on image, (top right)
normalizing spectrogram by row, (bottom left) normalizing
spectrogram by column, (bottom right) trace extraction on
normalized data for α = 0.1, 0.5

4. Classification
4.1. CNN Network architecture: SETINet

The baseline model results indicated that distinguishing
unclear signals was a key source of error. This would need
a model to learn better filters that are able to extract the sig-
nal from the background noise. We chose to train a custom
CNN architecture for this task for two reasons. For one, the
VGG architecture is large, and built for a complex problem
(ImageNet consisted of 1000 classes of animals, cars, ob-
jects etc.), while distinguishing geometric signal shapes is
relatively less complex once the signals are extracted. Sec-
ond, the VGG architecture was trained on a drastically dif-
ferent dataset, while this problem needs fine-grained filter-
ing to bring out faint signals from noisy data. Attempting to
fine-tune the filters of a large architecture for a very differ-

3



Figure 5: Comparison of different CNN model architectures

ent problem would be ill-advised, unless our dataset was of
similar scale. For initial development, we use the BASIC4
dataset. A comparison of architecture iterations is shown in
Figure 5.

4.1.1 V1 Architecture

As a starting point, we began with an architecture,
loosely based on the LeNet[2] architecture used for MNIST
digit recognition, having a relatively small number of filters
as signal geometries once extracted, were a similar prob-
lem to distinguishing digits. We observed relatively poor
performance from the model, which was overfitting despite
an extensive search of hyperparameters, yielding an overall
accuracy 0.51 on BASIC4, which was worse than the base-
line. A closer look at the model activations showed that 4-5
Convolution+ReLU layers were needed to begin to denoise
the signals, at which point our image sizes were too small,
and shapes would be difficult to discern given only 7 such
units in this model.

4.1.2 V2 Architecture

The next iteration of the model used a total of 9 Convolu-
tion+ReLU layers, and were grouped into ’blocks’, before
a max-pooling operation, as from SETINet V1 we observed
that multiple Conv layers were needed to extract the signal.
This resulted in a smaller number of 5 maxpooling blocks
(compared to 7 earlier). We attempted to keep the final acti-
vation size before the final fully connected network small as
we had observed V1 to be overfitting. Hence this resulted
in more aggressive maxpooling at the beginning and at the
end as in Figure 5

To prevent the model from overfitting, we performed data
augmentation, such as horizontal flips, vertical flips and mi-
nor (≤ 10%) vertical/horizontal crops to multiply our train-
ing data by ×3. Also, since training a single model was
proving to be difficult, we trained two separate models:
one for signal vs noise, and one to distinguish between 3
classes. This gave a slightly improved overall accuracy of
0.66 and a signal v noise F1 of 0.905.

4.1.3 V3 Architecture

Examining the activations of SETINet V2, we saw that
extracting poor SNR images was still happening towards the
end of block 3. The activations size at that point was greatly
reduced to 32× 64 which seemed too small to capture sub-
tle curves and differences amongst signals that are only a
few pixels wide (see Section 7 Appendix). In the V3 archi-
tecture, we avoided the use of max-pooling layers, instead
using Convolution layers of size 4 × 4 with a stride of 2 to
downsize as in Figure 5. This resulted in a larger activation
of 64× 128 after 6 purely Conv+ReLU blocks (see Section
7 Appendix). This yielded a much improved overall accu-
racy of 0.78 and a signal v noise F1 of 0.945. Performance
is compared in Table 5.
With a promising architecture, we used the full dataset (6
classes), using Welch spectrograms (Section 3.1) to gener-
ate images of our size 256 × 512 without any downsizing
loss, and column normalization (Section 3.2.1). Using the
same approach as in V2, we trained 2 separate models and
ensembled their predictions for a large improvement on the
baseline (Table 6). We verified that the ensemble of 2 sep-
arate models performed slightly better than a single model
that obtained accuracy of 0.78 compared to 0.79.

4



BASIC4 class accuracy Noise vs Signal F1

Baseline 0.65 0.85

SetiNetV1 0.51 0.67

SetiNetV2 0.66 0.905

SetiNetV3 0.78 0.945

Table 5: SETINet performance comparison on BASIC4

Prediction 0 1 2 3 4 5

True class

0 172 0 3 0 9 1
1 10 146 27 0 2 0
2 13 50 277 1 7 1
3 12 8 8 134 2 28
4 20 0 10 0 134 22
5 14 0 1 4 24 160

Overall accuracy: 0.79
Signal v noise F1: 0.962

Table 6: Results for SETINetV3 ensemble on full dataset

4.2. Trace feature extraction

For this approach, we use as data the time-series vectors
X and Ixt

from Section 3.2 that are the chosen frequencies
and intensities at the corresponding frequencies (Figure 6
). From these, we extract the following features, for two
different values of α = 0.1, 0.5 (constrained, more ’squig-
gly’):

1. Order 2 Polynomial fit forX (2×3 features) - Since we
are looking to distinguish lines/curves (that are con-
ics/parabolas), precise values should help distinguish
slight curvature. As seen in Figure 6, we estimate
these using RANSAC regression as opposed to ordi-
nary least squares, to only fit the set of inlier points in
cases where the signal is partially cutoff.

2. Mean Squared Error of fit for X (2 × 1 features) -
Should help differentiate geometric signals such as
lines/curves from others.

3. Total variation, Kurtosis for X , Ixt
(2 × 4 features) -

Variation is measured as std[diff(X∗)], where X∗ is a
rolling mean smoothed series of X to reduce the noise
before differencing. The Kurtosis helps differentiate
purely noisy signals (closer to Gaussian) from others.

4. Mean Squared difference between X for two different
values of α = 0.1, 0.5 (1 feature) - For signals that are

Figure 6: (top left) X and (top right) Ixt
extracted from

cutoff signal in Figure 3, (bottom left) polynomial fit via
RANSAC, (bottom right) polynomial fit for least squares

purely noise, we expect less consistency between the
traces for two extreme values of α.

As the number of features was significantly smaller than
our baseline, we could build a kernel-SVM model with a
gaussian kernel which yielded better performance than a
simple linear SVM. Results for this model are in Table 7,
which is an improvement on the baseline. While it is worse
that the SETINet V3 model at distinguishing signal from
noise, it is slightly better at distinguishing classes 1 and 2
(narrowband, narrowbanddrd).

Prediction 0 1 2 3 4 5

True class

0 162 0 2 0 10 11
1 15 144 0 20 4 2
2 44 32 247 15 6 5
3 50 11 3 111 5 12
4 72 1 4 1 72 36
5 112 1 2 3 34 51

Overall accuracy: 0.61
Signal v noise F1: 0.84

Table 7: Classification results for trace-extraction model
(C = 100, γ = 1/17)

4.3. Ensemble Model

While the trace-extraction model was able to obtain bet-
ter performance for classes 1 & 2 that were confused by the
CNN model, the overall accuracy for the CNN model was
significantly higher. We attempted to combine the strength
of both models by building an ensemble model. To do so,
we concatenated the 17 features described in Section 4.2
with the softmax outputs of our 2 separate CNN models
(signal v noise and 5 signal classification) in the form of

5



Prediction 0 1 2 3 4 5

True class

0 175 2 2 1 4 1
1 9 162 7 4 1 2
2 15 50 278 1 4 1
3 14 11 3 141 1 22
4 24 1 5 0 132 24
5 17 0 1 10 20 155

Overall accuracy: 0.80
Signal v noise F1: 0.955

Table 8: Results for SETINetV3 ensemble on full dataset
(C = 0.8, γ = 1/24)

class probabilities (2 + 5 features). As earlier, we trained a
kernel SVM with a gaussian kernel on these features which
resulted in a clear improvement on classes 1 and 2 and slight
improvement overall (Table 8).

5. Conclusion & Further Work

Figure 7: Loss curves for SETINetV3 trained on full dataset

In conclusion, we were able to achieve a good accuracy
on the dataset, as manual error analysis of misclassifications
from our best model shows signals that are highly buried
in noise, most of which would not be identifiable by hu-
man eye. By ensembling our two approaches we were able
to combine the strengths of the two models. While our fi-
nal CNN model architecture showed a great improvement,
some further work we think would lead to further improve-
ments is listed below.

1. Improve manually generated features to help distin-
guish classes 4 and 5 (squiggle, and squigglesquare-
pulsed).

2. Use techniques such as hard negative mining for fur-
ther training of the CNN model to improve perfor-
mance on difficult classes.

3. Extend the trace extraction algorithm to make an ad-
ditional decision of whether to include a point, to deal
better with partially cutoff signals.

4. As seen in Figure 7, we can see that for the best model,
the training performance is not significantly better than
validation. While this is good generalization, it might
suggest room for a larger model until there is signif-
icant overfitting. Based on our work so far, a likely
option could be a modification on the V3 model with
no downsizing in block1 and extra conv layers down-
stream.

5. Extend the approach in 3.1.1 to use an ensemble of
CNN models looking at different image aspect ratios.

6. Acknowledgements
We would like to thank Prof. Jeffrey Ullman and An-

dreas Paepcke for their regular feedback and mentorship.
We would also like to thank Adam Cox and Graham Mack-
intosh from the IBM-SETI team for their feedback and as-
sistance while working with the dataset. Lastly, we would
like to thank Justin Johnson and Serena Yeung from the
CS231n class for feedback while designing our models.

References
[1] J. W. Frank Fan, Kenny Smith. Project seti: Machine recog-

nition of squiggles in seti signal data, 2016.
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[3] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

7. Appendix

6



Figure 8: Visualizing SETINetV2 activations, to scale relative to input image. Each block corresponds to the next max-pool
layer (blue in Fig 5). For a low SNR image, signal is extracted by block 2/3 by when the activation size is quite small.

Figure 9: Visualizing SETINetV3 activations, to scale relative to input image (note the larger activation sizes). Signal is
extracted at block 1/2 enabling next layers to distinguish shapes of signals that are a few pixels wide in the original image.

7


